Chemobrionics Database

Home Zotero library How to use How to cite About us Contact Updates RSS

Papers added in 2022

Last update on Jul 19, 2024

These articles were added to the database before it was made available online. However, it was felt that having a list of the added articles may be of interest. The list starts with the last article added in 2022 and ends with the first one.

(1) Patel, V. K.; Busupalli, B. Dissimilar Chemobrionic Growth in Copper Silicate Chemical Gardens in the Absence or Presence of Light. Chem. Commun. 2023, 59 (6), 768–771. https://doi.org/10.1039/D2CC06570C.

(2) Huld, S.; McMahon, S.; Sjöberg, S.; Huang, P.; Neubeck, A. Chemical Gardens Mimic Electron Paramagnetic Resonance Spectra and Morphology of Biogenic Mn Oxides. Astrobiology 2023, 23 (1), 24–32. https://doi.org/10.1089/ast.2021.0194.

(3) Zahorán, R.; Kumar, P.; Juhász, Á.; Horvath, D.; Toth, A. Flow-Driven Synthesis of Calcium Phosphate-Calcium Alginate Hybrid Chemical Gardens. Soft Matter 2022. https://doi.org/10.1039/D2SM01063A.

(4) Knoll, P.; Batista, B. C.; McMahon, S.; Steinbock, O. Petrified Chemical Gardens. ACS Earth Space Chem. 2022. https://doi.org/10.1021/acsearthspacechem.2c00182.

(5) Rieder, J.; Nützl, M.; Kunz, W.; Kellermeier, M. Formation and Dynamic Behavior of Macroscopic Aluminum-Based Silica Gardens. Langmuir 2022. https://doi.org/10.1021/acs.langmuir.2c00971.

(6) Borrego-Sánchez, A.; Gutiérrez-Ariza, C.; Sainz-Díaz, C. I.; Cartwright, J. H. E. The Effect of the Presence of Amino Acids on the Precipitation of Inorganic Chemical-Garden Membranes: Biomineralization at the Origin of Life. Langmuir 2022. https://doi.org/10.1021/acs.langmuir.2c01345.

(7) Barge, L. M.; Abedian, Y.; Russell, M. J.; Doloboff, I. J.; Cartwright, J. H. E.; Kidd, R. D.; Kanik, I. From Chemical Gardens to Fuel Cells: Generation of Electrical Potential and Current Across Self-Assembling Iron Mineral Membranes. Angewandte Chemie International Edition 2015, 54 (28), 8184–8187. https://doi.org/10.1002/anie.201501663.

(8) Aslanbay Guler, B.; Demirel, Z.; Imamoglu, E. Development of a Controlled Injection Method Using Support Templates for the Production of Chemobrionic Materials. ACS Omega 2022, 7 (27), 23910–23918. https://doi.org/10.1021/acsomega.2c02620.

(9) Ding, Y.; Gutiérrez-Ariza, C. M.; Zheng, M.; Felgate, A.; Lawes, A.; Sainz-Díaz, C. I.; Cartwright, J. H. E.; Cardoso, S. S. S. Downward Fingering Accompanies Upward Tube Growth in a Chemical Garden Grown in a Vertical Confined Geometry. Phys. Chem. Chem. Phys. 2022. https://doi.org/10.1039/D2CP01862D.

(10) Busupalli, B.; Patel, V. K. Dark-Induced Vertical Growth of Chemobrionic Architectures in Silver-Based Precipitating Chemical Gardens. Chem. Commun. 2022, 58 (26), 4172–4175. https://doi.org/10.1039/D1CC06430D.

(11) Nasir, M.; Yamaguchi, R.; She, Y.; Patmonoaji, A.; Mahardika, M. A.; Wang, W.; Li, Z.; Matsushita, S.; Suekane, T. Hydrodynamic Fingering Induced by Gel Film Formation in Miscible Fluid Systems: An Experimental and Mathematical Study. Applied Sciences 2022, 12 (10), 5043. https://doi.org/10.3390/app12105043.

(12) Kumar, P.; Wang, Q.; Horváth, D.; Tóth, Á.; Steinbock, O. Collective Motion of Self-Propelled Chemical Garden Tubes. Soft Matter 2022. https://doi.org/10.1039/D2SM00395C.

(13) Getenet, M.; García-Ruiz, J. M.; Verdugo-Escamilla, C.; Guerra-Tschuschke, I. Mineral Vesicles and Chemical Gardens from Carbonate-Rich Alkaline Brines of Lake Magadi, Kenya. Crystals 2020, 10 (6), 467. https://doi.org/10.3390/cryst10060467.

(14) Wang, Q.; Steinbock, O. Shape-Preserving Conversion of Calcium Carbonate Tubes to Self-Propelled Micromotors. Phys. Chem. Chem. Phys. 2022. https://doi.org/10.1039/D2CP01807A.

(15) García-Ruiz, J. M.; Nakouzi, E.; Kotopoulou, E.; Tamborrino, L.; Steinbock, O. Biomimetic Mineral Self-Organization from Silica-Rich Spring Waters. Science Advances 2017, 3 (3), e1602285. https://doi.org/10.1126/sciadv.1602285.

(16) Kotopoulou, E.; Lopez-Haro, M.; Calvino Gamez, J. J.; García-Ruiz, J. M. Nanoscale Anatomy of Iron-Silica Self-Organized Membranes: Implications for Prebiotic Chemistry. Angewandte Chemie International Edition 2021, 60 (3), 1396–1402. https://doi.org/10.1002/anie.202012059.

(17) Escamilla-Roa, E.; Zorzano, M.-P.; Martin-Torres, J.; Sainz-Díaz, C. I.; Cartwright, J. H. E. Self-Assembled Structures Formed in CO2-Enriched Atmospheres: A Case-Study for Martian Biomimetic Forms. Astrobiology 2022. https://doi.org/10.1089/ast.2021.0123.

(18) Haudin, F.; De Wit, A. Patterns Due to an Interplay between Viscous and Precipitation-Driven Fingering. Physics of Fluids 2015, 27 (11), 113101. https://doi.org/10.1063/1.4934669.

(19) Rocha, L. A. M.; Thorne, L.; Wong, J. J.; Cartwright, J. H. E.; Cardoso, S. S. S. Archimedean Spirals Form at Low Flow Rates in Confined Chemical Gardens. Langmuir 2022, 38 (21), 6700–6710. https://doi.org/10.1021/acs.langmuir.2c00633.

(20) Angelis, G.; Katsanou, M.-E.; Giannopoulos-Dimitriou, A.; Vizirianakis, I. S.; Pampalakis, G. Generation of Chemobrionic Jellyfishes That Mechanically Divide, Grow and Exhibit Biomimetic “Symbiosis.” ChemSystemsChem 2022, n/a (n/a). https://doi.org/10.1002/syst.202200001.

(21) Rocha, L. A. M.; Cartwright, J. H. E.; Cardoso, S. S. S. Filament Dynamics in Vertical Confined Chemical Gardens. Chaos 2022, 32 (5), 053107. https://doi.org/10.1063/5.0085834.

(22) Dickson, J.; Martinez, E.; Pagano, J. J.; Hudson, R.; Perl, S. M.; Barge, L. M. Incorporating Microbes into Laboratory-Grown Chimneys for Hydrothermal Microbiology Experiments. ACS Earth Space Chem. 2022, 6 (4), 953–961. https://doi.org/10.1021/acsearthspacechem.1c00354.

(23) Kumar, P.; Sebők, D.; Kukovecz, Á.; Horváth, D.; Tóth, Á. Hierarchical Self-Assembly of Metal-Ion-Modulated Chitosan Tubules. Langmuir 2021, 37 (43), 12690–12696. https://doi.org/10.1021/acs.langmuir.1c02097.

(24) Wang, Q.; Barge, L. M.; Steinbock, O. Microfluidic Production of Pyrophosphate Catalyzed by Mineral Membranes with Steep pH Gradients. Chemistry – A European Journal 2019, 25 (18), 4732–4739. https://doi.org/10.1002/chem.201805950.

(25) Rocha, L. A. M.; Gutiérrez-Ariza, C.; Pimentel, C.; Sánchez-Almazo, I.; Sainz-Díaz, C. I.; Cardoso, S. S. S.; Cartwright, J. H. E. Formation and Structures of Horizontal Submarine Fluid Conduit and Venting Systems Associated With Marine Seeps. Geochemistry, Geophysics, Geosystems 2021, 22 (11), e2021GC009724. https://doi.org/10.1029/2021GC009724.

(26) Rieder, J.; Nicoleau, L.; Glaab, F.; E. S. Van Driessche, A.; Manuel Garcia-Ruiz, J.; Kunz, W.; Kellermeier, M. Dynamic Diffusion and Precipitation Processes Across Calcium Silicate Membranes. Journal of Colloid and Interface Science 2022. https://doi.org/10.1016/j.jcis.2022.03.042.

(27) Emmanuel, M.; Lantos, E.; Horváth, D.; Tóth, Á. Formation and Growth of Lithium Phosphate Chemical Gardens. Soft Matter 2022, 18 (8), 1731–1736. https://doi.org/10.1039/D1SM01808F.

(28) Wang, Q.; Knoll, P.; Steinbock, O. Self-Propelled Chemical Garden Tubes. J. Phys. Chem. B 2021, 125 (51), 13908–13915. https://doi.org/10.1021/acs.jpcb.1c09088.