These articles were added to the database before it was made available online. However, it was felt that having a list of the added articles may be of interest. The list starts with the last article added in 2021 and ends with the first one.
(1) Fu, X.; Jimenez-Martinez, J.; Nguyen, T. P.; Carey, J. W.; Viswanathan, H.; Cueto-Felgueroso, L.; Juanes, R. Crustal Fingering Facilitates Free-Gas Methane Migration through the Hydrate Stability Zone. PNAS 2020, 117 (50), 31660–31664. https://doi.org/10.1073/pnas.2011064117.
(2) Fu, X.; Waite, W. F.; Ruppel, C. D. Hydrate Formation on Marine Seep Bubbles and the Implications for Water Column Methane Dissolution. Journal of Geophysical Research: Oceans 2021, 126 (9), e2021JC017363. https://doi.org/10.1029/2021JC017363.
(3) Möller, F. M.; Kriegel, F.; Kieß, M.; Sojo, V.; Braun, D. Steep pH Gradients and Directed Colloid Transport in a Microfluidic Alkaline Hydrothermal Pore. Angewandte Chemie International Edition 2017, 56 (9), 2340–2344. https://doi.org/10.1002/anie.201610781.
(4) Getenet, M.; Rieder, J.; Kellermeier, M.; Kunz, W.; Manuel García-Ruiz, J. Tubular Structures of Calcium Carbonate: Formation, Characterization, and Implications in Natural Mineral Environments. Chemistry – A European Journal 2021, 27 (65), 16135–16144. https://doi.org/10.1002/chem.202101417.
(5) You, J.; Liu, Y.; Zhou, D.; Yang, Y. Triassic Hydrothermal Chimneys from the Ordos Basin of Northern China. Sci Rep 2021, 11 (1), 22712. https://doi.org/10.1038/s41598-021-02053-0.
(6) Ziemecka, I.; Brau, F.; De Wit, A. Confined Direct and Reverse Chemical Gardens: Influence of Local Flow Velocity on Precipitation Patterns. Chaos 2020, 30 (1), 013140. https://doi.org/10.1063/1.5128107.
(7) Hughes, E. A. B.; Robinson, T. E.; Moakes, R. J. A.; Chipara, M.; Grover, L. M. Controlled Self-Assembly of Chemical Gardens Enables Fabrication of Heterogeneous Chemobrionic Materials. Commun Chem 2021, 4 (1), 1–8. https://doi.org/10.1038/s42004-021-00579-y.
(8) Zouheir, M.; Le, T.-A.; Torop, J.; Nikiforow, K.; Khatib, M.; Zohar, O.; Haick, H.; Huynh, T.-P. CuS-Carrageenan Composite Grown from the Gel/Liquid Interface. ChemSystemsChem 2021, 3 (4), e2000063. https://doi.org/10.1002/syst.202000063.
(9) Weber, J. M.; Barge, L. M. Iron-Silicate Chemical Garden Morphology and Silicate Reactivity with Alpha-Keto Acids. ChemSystemsChem 2021, 3 (3), e2000058. https://doi.org/10.1002/syst.202000058.
(10) Cosmidis, J.; Templeton, A. S. Self-Assembly of Biomorphic Carbon/Sulfur Microstructures in Sulfidic Environments. Nat Commun 2016, 7 (1), 12812. https://doi.org/10.1038/ncomms12812.
(11) Noorduin, W. L.; Grinthal, A.; Mahadevan, L.; Aizenberg, J. Rationally Designed Complex, Hierarchical Microarchitectures. Science 2013, 340 (6134), 832–837. https://doi.org/10.1126/science.1234621.
(12) Ding, Y. Self-Assembled Precipitation Membranes and the Implications for Natural Sciences. Thesis, University of Cambridge, 2020. https://doi.org/10.17863/CAM.55352.
(13) Ding, Y.; Cartwright, J. H. E.; Cardoso, S. S. S. Convective Flow Driven by a Chemical Nanopump. Phys. Rev. Fluids 2020, 5 (8), 082201. https://doi.org/10.1103/PhysRevFluids.5.082201.
(14) Knoll, P.; D’Silva, D. S.; Adeoye, D. I.; Roper, M. G.; Steinbock, O. Fibrous Bundles in Biomorph Systems: Surface-Specific Growth and Interaction with Microposts. ChemSystemsChem 2021, 3 (4), e2000061. https://doi.org/10.1002/syst.202000061.
(15) Alp, F. B.; Gönen, M.; Savri̇k, S.; Balköse, D. Zinc Borate Chemical Garden and Zinc Borate Powders from Tincal Mineral and Zinc Sulfate Heptahydrate. Journal of Boron 2021, 6 (1), 227–235. https://doi.org/10.30728/boron.809041.
(16) Castellini, E.; Bernini, F.; Sebastianelli, L.; Bighi, B.; Ignacio Sainz-Díaz, C.; Mucci, A.; Malferrari, D.; Ranieri, A.; Gorni, G.; Marini, C.; Franca Brigatti, M.; Borsari, M. The Copper Chemical Garden as a Low Cost and Efficient Material for Breaking Down Air Pollution by Gaseous Ammonia. ChemSystemsChem 2021, n/a (n/a), e2100034. https://doi.org/10.1002/syst.202100034.
(17) Emmanuel, M.; Horváth, D.; Tóth, Á. Flow-Driven Crystal Growth of Lithium Phosphate in Microchannels. CrystEngComm 2020, 22 (29), 4887–4893. https://doi.org/10.1039/D0CE00540A.
(18) Brau, F.; Thouvenel-Romans, S.; Steinbock, O.; Cardoso, S. S. S.; Cartwright, J. H. E. Filiform Corrosion as a Pressure-Driven Delamination Process. Soft Matter 2019, 15 (4), 803–812. https://doi.org/10.1039/C8SM01928B.
(19) McMahon, S.; Ivarsson, M.; Wacey, D.; Saunders, M.; Belivanova, V.; Muirhead, D.; Knoll, P.; Steinbock, O.; Frost, D. A. Dubiofossils from a Mars-Analogue Subsurface Palaeoenvironment: The Limits of Biogenicity Criteria. Geobiology 2021, 19 (5), 473–488. https://doi.org/10.1111/gbi.12445.
(20) Sainz‐Díaz, C. I.; Escribano, B.; Sánchez‐Almazo, I.; Cartwright, J. H. E. Chemical Gardens Under Mars Conditions: Imaging Chemical Garden Growth In Situ in an Environmental Scanning Electron Microscope. Geophysical Research Letters 2021, 48 (10), e2021GL092883. https://doi.org/10.1029/2021GL092883.
(21) Wang, Q.; Steinbock, O. Flow-Assisted Self-Organization of Hybrid Membranes. Chemistry – A European Journal 2019, 25 (44), 10427–10432. https://doi.org/10.1002/chem.201901595.
(22) Pimentel, C.; Cartwright, J. H. E.; Sainz‐Díaz, C. I. A Tungstate Chemical Garden. ChemSystemsChem 2020, 2 (6), e2000023. https://doi.org/10.1002/syst.202000023.
(23) Bernini, F.; Castellini, E.; Sebastianelli, L.; Bighi, B.; Sainz‐Díaz, C. I.; Mucci, A.; Malferrari, D.; Ranieri, A.; Brigatti, M. F.; Borsari, M. Self-Assembled Structures from Solid Cadmium(II) Acetate in Thiol/Ethanol Solutions: A Novel Type of Organic Chemical Garden. ChemSystemsChem 2021, 3 (2), e2000048. https://doi.org/10.1002/syst.202000048.
(24) Chin, K.; Pasalic, J.; Hermis, N.; Barge, L. M. Chemical Gardens as Electrochemical Systems: In Situ Characterization of Simulated Prebiotic Hydrothermal Vents by Impedance Spectroscopy. ChemPlusChem 2020, 85 (12), 2619–2628. https://doi.org/10.1002/cplu.202000600.
(25) Barge, L. M.; White, L. M. Experimentally Testing Hydrothermal Vent Origin of Life on Enceladus and Other Icy/Ocean Worlds. Astrobiology 2017, 17 (9), 820–833. https://doi.org/10.1089/ast.2016.1633.
(26) Russell, M. J.; Hall, A. J. The Emergence of Life from Iron Monosulphide Bubbles at a Submarine Hydrothermal Redox and pH Front. Journal of the Geological Society 1997, 154 (3), 377–402. https://doi.org/10.1144/gsjgs.154.3.0377.
(27) Russell, M. J.; Hall, A. J.; Turner, D. In Vitro Growth of Iron Sulphide Chimneys: Possible Culture Chambers for Origin-of-Life Experiments. Terra Nova 1989, 1 (3), 238–241. https://doi.org/10.1111/j.1365-3121.1989.tb00364.x.
(28) Barge, L. M.; Kee, T. P.; Doloboff, I. J.; Hampton, J. M. P.; Ismail, M.; Pourkashanian, M.; Zeytounian, J.; Baum, M. M.; Moss, J. A.; Lin, C.-K.; Kidd, R. D.; Kanik, I. The Fuel Cell Model of Abiogenesis: A New Approach to Origin-of-Life Simulations. Astrobiology 2014, 14 (3), 254–270. https://doi.org/10.1089/ast.2014.1140.
(29) Barge, L. M.; Doloboff, I. J.; Russell, M. J.; VanderVelde, D.; White, L. M.; Stucky, G. D.; Baum, M. M.; Zeytounian, J.; Kidd, R.; Kanik, I. Pyrophosphate Synthesis in Iron Mineral Films and Membranes Simulating Prebiotic Submarine Hydrothermal Precipitates. Geochimica et Cosmochimica Acta 2014, 128, 1–12. https://doi.org/10.1016/j.gca.2013.12.006.
(30) Makki, R.; Steinbock, O. Nonequilibrium Synthesis of Silica-Supported Magnetite Tubes and Mechanical Control of Their Magnetic Properties. J. Am. Chem. Soc. 2012, 134 (37), 15519–15527. https://doi.org/10.1021/ja3064843.
(31) Batista, B. C.; Cruz, P.; Steinbock, O. From Hydrodynamic Plumes to Chemical Gardens: The Concentration-Dependent Onset of Tube Formation. Langmuir 2014, 30 (30), 9123–9129. https://doi.org/10.1021/la5020175.
(32) Stone, D. A.; Goldstein, R. E. Tubular Precipitation and Redox Gradients on a Bubbling Template. PNAS 2004, 101 (32), 11537–11541. https://doi.org/10.1073/pnas.0404544101.
(33) Spanoudaki, D.; Pavlidou, E.; Sazou, D. The Growth of an Electrochemical Garden on a Zinc Electrode. ChemSystemsChem 2021, 3 (3), e2000054. https://doi.org/10.1002/syst.202000054.
(34) McGlynn, S. E.; Kanik, I.; Russell, M. J. Peptide and RNA Contributions to Iron–Sulphur Chemical Gardens as Life’s First Inorganic Compartments, Catalysts, Capacitors and Condensers. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2012, 370 (1969), 3007–3022. https://doi.org/10.1098/rsta.2011.0211.
(35) Mielke, R. E.; Robinson, K. J.; White, L. M.; McGlynn, S. E.; McEachern, K.; Bhartia, R.; Kanik, I.; Russell, M. J. Iron-Sulfide-Bearing Chimneys as Potential Catalytic Energy Traps at Life’s Emergence. Astrobiology 2011, 11 (10), 933–950. https://doi.org/10.1089/ast.2011.0667.
(36) Mielke, R. E.; Russell, M. J.; Wilson, P. R.; McGlynn, S. E.; Coleman, M.; Kidd, R.; Kanik, I. Design, Fabrication, and Test of a Hydrothermal Reactor for Origin-of-Life Experiments. Astrobiology 2010, 10 (8), 799–810. https://doi.org/10.1089/ast.2009.0456.
(37) Punia, K.; Bucaro, M.; Pevtsov, Y.; Viso, C.; Zubrich, N.; Volkova, V.; Bykov, A.; Kalluraya, K.; Shukurova, S.; L’Amoreaux, W.; Raja, K. S. Chemobrionic Sponge-Mimetic Tubules for Probing the Template-Assisted Evolution of Ocean Sponges and Bioengineering Applications. ACS Earth Space Chem. 2020, 4 (12), 2289–2298. https://doi.org/10.1021/acsearthspacechem.0c00207.
(38) Punia, K.; Bucaro, M.; Mancuso, A.; Cuttitta, C.; Marsillo, A.; Bykov, A.; L’Amoreaux, W.; Raja, K. S. Rediscovering Chemical Gardens: Self-Assembling Cytocompatible Protein-Intercalated Silicate–Phosphate Sponge-Mimetic Tubules. Langmuir 2016, 32 (34), 8748–8758. https://doi.org/10.1021/acs.langmuir.6b01721.
(39) Omran, A. Plausibility of the Formose Reaction in Alkaline Hydrothermal Vent Environments. Orig Life Evol Biosph 2023, 53 (1), 113–125. https://doi.org/10.1007/s11084-020-09599-5.
(40) Hooks, M. R.; Webster, P.; Weber, J. M.; Perl, S.; Barge, L. M. Effects of Amino Acids on Iron-Silicate Chemical Garden Precipitation. Langmuir 2020, 36 (21), 5793–5801. https://doi.org/10.1021/acs.langmuir.0c00502.
(41) Pagano, J. J.; Bánsági, T.; Steinbock, O. Bubble-Templated and Flow-Controlled Synthesis of Macroscopic Silica Tubes Supporting Zinc Oxide Nanostructures. Angewandte Chemie International Edition 2008, 47 (51), 9900–9903. https://doi.org/10.1002/anie.200803203.
(42) Bentley, M. R.; Batista, B. C.; Steinbock, O. Pressure Controlled Chemical Gardens. J. Phys. Chem. A 2016, 120 (25), 4294–4301. https://doi.org/10.1021/acs.jpca.6b03859.
(43) Uechi, I.; Katsuki, A.; Dunin-Barkovskiy, L.; Tanimoto, Y. 3D-Morphological Chirality Induction in Zinc Silicate Membrane Tube Using a High Magnetic Field. J. Phys. Chem. B 2004, 108 (8), 2527–2530. https://doi.org/10.1021/jp036018o.
(44) Fryfogle, P. J.; Nelson, E. J.; Pagano, J. J. Luminescent Tubular Precipitation Structures from Reactant-Loaded Pellets. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015, 485, 84–90. https://doi.org/10.1016/j.colsurfa.2015.09.005.
(45) Makki, R.; Ji, X.; Mattoussi, H.; Steinbock, O. Self-Organized Tubular Structures as Platforms for Quantum Dots. J. Am. Chem. Soc. 2014, 136 (17), 6463–6469. https://doi.org/10.1021/ja501941d.
(46) Sainz‐Díaz, C. I.; Escamilla‐Roa, E.; Cartwright, J. H. E. Growth of Self-Assembling Tubular Structures of Magnesium Oxy/Hydroxide and Silicate Related With Seafloor Hydrothermal Systems Driven by Serpentinization. Geochemistry, Geophysics, Geosystems 2018, 19 (8), 2813–2822. https://doi.org/10.1029/2018GC007594.
(47) Tanimoto, Y.; Duan, W. Application of High Magnetic Field to Chemical and Physical Processes. In Materials Processing in Magnetic Fields; WORLD SCIENTIFIC, 2005; pp 141–146. https://doi.org/10.1142/9789812701800_0015.
(48) Clément, R.; Douady, S. Ocean-Ridge-like Growth in Silica Tubes. EPL 2010, 89 (4), 44004. https://doi.org/10.1209/0295-5075/89/44004.
(49) Parmar, K.; Pramanik, A. K.; Bandyopadhya, N. R.; Bhattacharjee, S. Synthesis and Characterization of Fe(III)-Silicate Precipitation Tubes. Materials Research Bulletin 2010, 45 (9), 1283–1287. https://doi.org/10.1016/j.materresbull.2010.05.003.
(50) Pagano, J. J.; Thouvenel-Romans, S.; Steinbock, O. Compositional Analysis of Copper–Silica Precipitation Tubes. Phys. Chem. Chem. Phys. 2006, 9 (1), 110–116. https://doi.org/10.1039/B612982J.
(51) Makki, R.; Steinbock, O. Synthesis of Inorganic Tubes under Actively Controlled Growth Velocities and Injection Rates. J. Phys. Chem. C 2011, 115 (34), 17046–17053. https://doi.org/10.1021/jp2046849.
(52) Roszol, L.; Steinbock, O. Controlling the Wall Thickness and Composition of Hollow Precipitation Tubes. Phys. Chem. Chem. Phys. 2011, 13 (45), 20100–20103. https://doi.org/10.1039/C1CP22556A.
(53) Roszol, L.; Makki, R.; Steinbock, O. Postsynthetic Processing of Copper Hydroxide-Silica Tubes. Chem. Commun. 2013, 49 (51), 5736–5738. https://doi.org/10.1039/C3CC41516C.
(54) Thouvenel-Romans, S.; Pagano, J. J.; Steinbock, O. Bubble Guidance of Tubular Growth in Reaction–Precipitation Systems. Phys. Chem. Chem. Phys. 2005, 7 (13), 2610–2615. https://doi.org/10.1039/B504407C.
(55) Makki, R.; Roszol, L.; Pagano, J. J.; Steinbock, O. Tubular Precipitation Structures: Materials Synthesis under Non-Equilibrium Conditions. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2012, 370 (1969), 2848–2865. https://doi.org/10.1098/rsta.2011.0378.
(56) Pagano, J. J.; Bánsági, T.; Steinbock, O. Tube Formation in Reverse Silica Gardens. J. Phys. Chem. C 2007, 111 (26), 9324–9329. https://doi.org/10.1021/jp071534q.
(57) Thouvenel-Romans, S.; Steinbock, O. Oscillatory Growth of Silica Tubes in Chemical Gardens. J. Am. Chem. Soc. 2003, 125 (14), 4338–4341. https://doi.org/10.1021/ja0298343.
(58) Thouvenel-Romans, S.; Saarloos, W. van; Steinbock, O. Silica Tubes in Chemical Gardens: Radius Selection and Its Hydrodynamic Origin. EPL 2004, 67 (1), 42. https://doi.org/10.1209/epl/i2003-10279-7.
(59) Escamilla‐Roa, E.; Cartwright, J. H. E.; Sainz‐Díaz, C. I. Chemobrionic Fabrication of Hierarchical Self-Assembling Nanostructures of Copper Oxide and Hydroxide. ChemSystemsChem 2019, 1 (3), e1900011. https://doi.org/10.1002/syst.201900011.
(60) Duan, W.; Kitamura, S.; Uechi, I.; Katsuki, A.; Tanimoto, Y. Three-Dimensional Morphological Chirality Induction Using High Magnetic Fields in Membrane Tubes Prepared by a Silicate Garden Reaction. J. Phys. Chem. B 2005, 109 (28), 13445–13450. https://doi.org/10.1021/jp050469m.
(61) Collins, C.; Zhou, W.; Klinowski, J. A Unique Structure of Cu2(OH)3·NH3 Crystals in the `silica Garden’ and Their Degradation under Electron Beam Irradiation. Chemical Physics Letters 1999, 306 (3), 145–148. https://doi.org/10.1016/S0009-2614(99)00438-8.
(62) Makki, R.; Al‐Humiari, M.; Dutta, S.; Steinbock, O. Hollow Microtubes and Shells from Reactant-Loaded Polymer Beads. Angewandte Chemie International Edition 2009, 48 (46), 8752–8756. https://doi.org/10.1002/anie.200903292.
(63) Spanoudaki, D.; Brau, F.; Wit, A. D. Oscillatory Budding Dynamics of a Chemical Garden within a Co-Flow of Reactants. Phys. Chem. Chem. Phys. 2021, 23 (2), 1684–1693. https://doi.org/10.1039/D0CP05668E.
(64) Rocha, L. A. M.; Cartwright, J. H. E.; Cardoso, S. S. S. Filament Dynamics in Planar Chemical Gardens. Phys. Chem. Chem. Phys. 2021, 23 (9), 5222–5235. https://doi.org/10.1039/D0CP03674A.
(65) Brau, F.; Haudin, F.; Thouvenel-Romans, S.; Wit, A. D.; Steinbock, O.; Cardoso, S. S. S.; Cartwright, J. H. E. Filament Dynamics in Confined Chemical Gardens and in Filiform Corrosion. Phys. Chem. Chem. Phys. 2018, 20 (2), 784–793. https://doi.org/10.1039/C7CP06003C.
(66) Haudin, F.; Brau, F.; Wit, A. D. Mise en relief des jardins chimiques par confinement. Reflets phys. 2017, No. 53, 14–19. https://doi.org/10.1051/refdp/201753014.
(67) Wagatsuma, S.; Higashi, T.; Sumino, Y.; Achiwa, A. Pattern of a Confined Chemical Garden Controlled by Injection Speed. Phys. Rev. E 2017, 95 (5), 052220. https://doi.org/10.1103/PhysRevE.95.052220.
(68) Haudin, F.; Cartwright, J. H. E.; De Wit, A. Direct and Reverse Chemical Garden Patterns Grown upon Injection in Confined Geometries. J. Phys. Chem. C 2015, 119 (27), 15067–15076. https://doi.org/10.1021/acs.jpcc.5b00599.
(69) Haudin, F.; Cartwright, J. H. E.; Brau, F.; Wit, A. D. Spiral Precipitation Patterns in Confined Chemical Gardens. PNAS 2014, 111 (49), 17363–17367. https://doi.org/10.1073/pnas.1409552111.
(70) Angelis, G.; Zayed, D. N.; Karioti, A.; Lazari, D.; Kanata, E.; Sklaviadis, T.; Pampalakis, G. A Closed Chemobrionic System as a Biochemical Delivery Platform. Chemistry – A European Journal 2019, 25 (56), 12916–12919. https://doi.org/10.1002/chem.201903255.
(71) Balog, E.; Bittmann, K.; Schwarzenberger, K.; Eckert, K.; Wit, A. D.; Schuszter, G. Influence of Microscopic Precipitate Structures on Macroscopic Pattern Formation in Reactive Flows in a Confined Geometry. Phys. Chem. Chem. Phys. 2019, 21 (6), 2910–2918. https://doi.org/10.1039/C8CP07693F.
(72) Hussein, S.; Maselko, J.; Pantaleone, J. T. Growing a Chemical Garden at the Air–Fluid Interface. Langmuir 2016, 32 (3), 706–711. https://doi.org/10.1021/acs.langmuir.5b04196.
(73) Kaminker, V.; Maselko, J.; Pantaleone, J. Chemical Precipitation Structures Formed by Drops Impacting on a Deep Pool. J. Chem. Phys. 2012, 137 (18), 184701. https://doi.org/10.1063/1.4762828.
(74) Haudin, F.; Brasiliense, V.; Cartwright, J. H. E.; Brau, F.; Wit, A. D. Genericity of Confined Chemical Garden Patterns with Regard to Changes in the Reactants. Phys. Chem. Chem. Phys. 2015, 17 (19), 12804–12811. https://doi.org/10.1039/C5CP00068H.
(75) Parmar, K.; Bandyopadhya, N. R.; Chongder, D.; Bhattacharjee, S. Detailed Characterization of Calcium Silicate Precipitation Tube (CaSPT) as a Multi-Cation Adsorbent in Aqueous Medium. Materials Research Bulletin 2012, 47 (3), 677–682. https://doi.org/10.1016/j.materresbull.2011.12.019.
(76) Pratama, F. S.; Robinson, H. F.; Pagano, J. J. Spatially Resolved Analysis of Calcium–Silica Tubes in Reverse Chemical Gardens. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011, 389 (1), 127–133. https://doi.org/10.1016/j.colsurfa.2011.08.041.
(77) Pantaleone, J.; Toth, A.; Horvath, D.; RoseFigura, L.; Morgan, W.; Maselko, J. Pressure Oscillations in a Chemical Garden. Phys. Rev. E 2009, 79 (5), 056221. https://doi.org/10.1103/PhysRevE.79.056221.
(78) Pantaleone, J.; Toth, A.; Horvath, D.; Rother McMahan, J.; Smith, R.; Butki, D.; Braden, J.; Mathews, E.; Geri, H.; Maselko, J. Oscillations of a Chemical Garden. Phys. Rev. E 2008, 77 (4), 046207. https://doi.org/10.1103/PhysRevE.77.046207.
(79) Cartwright, J. H. E.; Escribano, B.; Khokhlov, S.; Sainz-Díaz, C. I. Chemical Gardens from Silicates and Cations of Group 2: A Comparative Study of Composition, Morphology and Microstructure. Phys. Chem. Chem. Phys. 2010, 13 (3), 1030–1036. https://doi.org/10.1039/C0CP01093F.
(80) Zissi, G. D.; Angelis, G.; Pampalakis, G. The Generation and Study of a Gold-Based Chemobrionic Plant-Like Structure. ChemSystemsChem 2021, 3 (1), e2000018. https://doi.org/10.1002/syst.202000018.
(81) Kaminker, V.; Maselko, J.; Pantaleone, J. The Dynamics of Open Precipitation Tubes. J. Chem. Phys. 2014, 140 (24), 244901. https://doi.org/10.1063/1.4882866.
(82) Collins, C.; Mann, G.; Hoppe, E.; Duggal, T.; Barr, T. L.; Klinowski, J. NMR and ESCA Studies of the ‘Silica Garden’ Brønsted Acid Catalyst. Phys. Chem. Chem. Phys. 1999, 1 (15), 3685–3687. https://doi.org/10.1039/A904058G.
(83) Collins, C.; Zhou, W.; Mackay, A. L.; Klinowski, J. The `silica Garden’: A Hierarcharical Nanostructure. Chemical Physics Letters 1998, 286 (1), 88–92. https://doi.org/10.1016/S0009-2614(98)00081-5.
(84) Herrera, A. L. Nociones de Biología; 1904.
(85) Ding, Y.; Cartwright, J. H. E.; Cardoso, S. S. S. Intrinsic Concentration Cycles and High Ion Fluxes in Self-Assembled Precipitate Membranes. Interface Focus 2019, 9 (6), 20190064. https://doi.org/10.1098/rsfs.2019.0064.
(86) Ding, Y.; Gutiérrez‐Ariza, C. M.; Ignacio Sainz‐Díaz, C.; Cartwright, J. H. E.; Cardoso, S. S. S. Exploding Chemical Gardens: A Phase-Change Clock Reaction. Angewandte Chemie International Edition 2019, 58 (19), 6207–6213. https://doi.org/10.1002/anie.201812331.
(87) Glaab, F.; Rieder, J.; Klein, R.; Choquesillo‐Lazarte, D.; Melero‐Garcia, E.; García‐Ruiz, J.-M.; Kunz, W.; Kellermeier, M. Precipitation and Crystallization Kinetics in Silica Gardens. ChemPhysChem 2017, 18 (4), 338–345. https://doi.org/10.1002/cphc.201600748.
(88) Glaab, F.; Rieder, J.; García-Ruiz, J. M.; Kunz, W.; Kellermeier, M. Diffusion and Precipitation Processes in Iron-Based Silica Gardens. Phys. Chem. Chem. Phys. 2016, 18 (36), 24850–24858. https://doi.org/10.1039/C6CP02107G.
(89) Glaab, F.; Kellermeier, M.; Kunz, W.; Morallon, E.; García‐Ruiz, J. M. Formation and Evolution of Chemical Gradients and Potential Differences Across Self-Assembling Inorganic Membranes. Angewandte Chemie International Edition 2012, 51 (18), 4317–4321. https://doi.org/10.1002/anie.201107754.
(90) Parmar, K.; Chongder, D.; Bandyopadhya, N. R.; Bhattacharjee, S. Investigation on Cu(II) Adsorption on Cobalt Silicate Precipitation Tube (CSPT) in Aqueous Medium. Journal of Hazardous Materials 2011, 185 (2), 1326–1331. https://doi.org/10.1016/j.jhazmat.2010.10.049.
(91) Parmar, K.; Chaturvedi, H. T.; Akhtar, M. W.; Chakravarty, S.; Das, S. K.; Pramanik, A.; Ghosh, M.; Panda, A. K.; Bandyopadhya, N.; Bhattacharjee, S. Characterization of Cobalt Precipitation Tube Synthesized through “Silica Garden” Route. Materials Characterization 2009, 60 (8), 863–868. https://doi.org/10.1016/j.matchar.2009.02.003.
(92) Yokoi, H.; Kuroda, N.; Kakudate, Y. Magnetic Field Induced Helical Structure in Freestanding Metal Silicate Tubes. Journal of Applied Physics 2005, 97 (10), 10R513. https://doi.org/10.1063/1.1861394.
(93) Balköse, D.; Özkan, F.; Köktürk, U.; Ulutan, S.; Ülkü, S.; Nişli, G. Characterization of Hollow Chemical Garden Fibers from Metal Salts and Water Glass. Journal of Sol-Gel Science and Technology 2002, 23 (3), 253–263. https://doi.org/10.1023/A:1013931116107.
(94) Jones, D. The Aha! Moment: A Scientisit’s Take on Creativity; The Johns Hopkins University Press: Baltimore, 2012.
(95) Jones, D. E. H. Gardening in Space: On the Space Shuttle Columbia, an Experiment Explores Chemical Growth without Gravity—and the Challenges of Orbital Science. American Scientist 2002, 90 (5), 454–461.
(96) Cartwright, J. H. E.; Escribano, B.; Sainz-Díaz, C. I.; Stodieck, L. S. Chemical-Garden Formation, Morphology, and Composition. II. Chemical Gardens in Microgravity. Langmuir 2011, 27 (7), 3294–3300. https://doi.org/10.1021/la104193q.
(97) Cartwright, J. H. E.; Escribano, B.; Sainz-Díaz, C. I. Chemical-Garden Formation, Morphology, and Composition. I. Effect of the Nature of the Cations. Langmuir 2011, 27 (7), 3286–3293. https://doi.org/10.1021/la104192y.
(98) Jones, D. E. H.; Walter, U. The Silicate Garden Reaction in Microgravity: A Fluid Interfacial Instability. Journal of Colloid and Interface Science 1998, 203 (2), 286–293. https://doi.org/10.1006/jcis.1998.5447.
(99) Cartwright, J. H. E.; García-Ruiz, J. M.; Novella, M. L.; Otálora, F. Formation of Chemical Gardens. Journal of Colloid and Interface Science 2002, 256 (2), 351–359. https://doi.org/10.1006/jcis.2002.8620.
(100) Damerell, V. R.; Brock, H. Colloidal Gardens from Sodium Metasilicate. J. Chem. Educ. 1949, 26 (3), 148. https://doi.org/10.1021/ed026p148.
(101) Zhao, W.; Sakurai, K. Realtime Observation of Diffusing Elements in a Chemical Garden. ACS Omega 2017, 2 (8), 4363–4369. https://doi.org/10.1021/acsomega.7b00930.
(102) Zeleny, M.; Klir, J.; Hufford, K. D. Precipitation Membranes, Osmotic Growths and Synthetic Biology. Artificial Life, SFI Studies in the Sciences of Complexity 1988, 125–139. https://doi.org/10.4324/9780429032769.
(103) Lüppo-Cramer. Kolloidchemie und Photographie. Zeitschr f Chem und Ind der Kolloide 1912, 10 (4), 182–189. https://doi.org/10.1007/BF01466477.
(104) Clunies Ross, W. J. Experiments with Silicate of Soda and Observations Thereon. Journal and proceedings of the Royal Society of New South Wales 1910, 44, 583–592.
(105) Glauber, J. R. Furni novi philosophici, sive Descriptio artis distillatoriæ novæ; nec non spirituum, olcorum, florum, aliorumque medicamentorum illus beneficio, facilimâ quâdam & perculiari viá è vegetabilibus, animalibus & mineralibus conficiendorum & quidem magno cum lucro; agens quoque de illorum usu tàm chymico quàm medico, edita & publicata in gratiam veritatis studiosorum; prostant apud J. Janssonium: Amsterodami, 1651.
(106) Cardoso, S. S. S.; Cartwright, J. H. E.; Steinbock, O.; Stone, D. A.; Thomas, N. L. Cement Nanotubes: On Chemical Gardens and Cement. Struct Chem 2017, 28 (1), 33–37. https://doi.org/10.1007/s11224-016-0811-0.
(107) Points, L. J.; Cooper, G. J. T.; Dolbecq, A.; Mialane, P.; Cronin, L. An All-Inorganic Polyoxometalate–Polyoxocation Chemical Garden. Chem. Commun. 2016, 52 (9), 1911–1914. https://doi.org/10.1039/C5CC09536K.
(108) Cooper, G. J. T.; Bowman, R. W.; Magennis, E. P.; Fernandez‐Trillo, F.; Alexander, C.; Padgett, M. J.; Cronin, L. Directed Assembly of Inorganic Polyoxometalate-Based Micrometer-Scale Tubular Architectures by Using Optical Control. Angewandte Chemie International Edition 2012, 51 (51), 12754–12758. https://doi.org/10.1002/anie.201204405.
(109) Cooper, G. J. T.; Kitson, P. J.; Winter, R.; Zagnoni, M.; Long, D.-L.; Cronin, L. Modular Redox-Active Inorganic Chemical Cells: iCHELLs. Angewandte Chemie International Edition 2011, 50 (44), 10373–10376. https://doi.org/10.1002/anie.201105068.
(110) Cooper, G. J. T.; Boulay, A. G.; Kitson, P. J.; Ritchie, C.; Richmond, C. J.; Thiel, J.; Gabb, D.; Eadie, R.; Long, D.-L.; Cronin, L. Osmotically Driven Crystal Morphogenesis: A General Approach to the Fabrication of Micrometer-Scale Tubular Architectures Based on Polyoxometalates. J. Am. Chem. Soc. 2011, 133 (15), 5947–5954. https://doi.org/10.1021/ja111011j.
(111) Boulay, A. G.; Cooper, G. J. T.; Cronin, L. Morphogenesis of Polyoxometalate Cluster-Based Materials to Microtubular Network Architectures. Chem. Commun. 2012, 48 (42), 5088–5090. https://doi.org/10.1039/C2CC31194A.
(112) Cooper, G. J. T.; Cronin, L. Real-Time Direction Control of Self Fabricating Polyoxometalate-Based Microtubes. J. Am. Chem. Soc. 2009, 131 (24), 8368–8369. https://doi.org/10.1021/ja902684b.
(113) Ritchie, C.; Cooper, G. J. T.; Song, Y.-F.; Streb, C.; Yin, H.; Parenty, A. D. C.; MacLaren, D. A.; Cronin, L. Spontaneous Assembly and Real-Time Growth of Micrometre-Scale Tubular Structures from Polyoxometalate-Based Inorganic Solids. Nature Chemistry 2009, 1 (1), 47–52. https://doi.org/10.1038/nchem.113.
(114) Barge, L. M.; Doloboff, I. J.; White, L. M.; Stucky, G. D.; Russell, M. J.; Kanik, I. Characterization of Iron–Phosphate–Silicate Chemical Garden Structures. Langmuir 2012, 28 (8), 3714–3721. https://doi.org/10.1021/la203727g.
(115) Hughes, E. A. B.; Jones-Salkey, O.; Forey, P.; Chipara, M.; Grover, L. M. Exploring the Formation of Calcium Orthophosphate-Pyrophosphate Chemical Gardens. ChemSystemsChem 2021, 3 (4), e2000062. https://doi.org/10.1002/syst.202000062.
(116) Rauscher, E.; Schuszter, G.; Bohner, B.; Tóth, Á.; Horváth, D. Osmotic Contribution to the Flow-Driven Tube Formation of Copper–Phosphate and Copper–Silicate Chemical Gardens. Phys. Chem. Chem. Phys. 2018, 20 (8), 5766–5770. https://doi.org/10.1039/C7CP08282G.
(117) Pópity-Tóth, É.; Schuszter, G.; Horváth, D.; Tóth, Á. Peristalticity-Driven Banded Chemical Garden. J. Chem. Phys. 2018, 148 (18), 184701. https://doi.org/10.1063/1.5023465.
(118) Maselko, J.; Geldenhuys, A.; Miller, J.; Atwood, D. Self-Construction of Complex Forms in a Simple Chemical System. Chemical Physics Letters 2003, 373 (5), 563–567. https://doi.org/10.1016/S0009-2614(03)00648-1.
(119) Fogde, A.; Qudsia, S.; Le, T.-A.; Sandberg, T.; Huynh, T.-P. (Calcium-Phosphate)/Carrageenan Gardens Grown from the Gel/Liquid Interface. ChemSystemsChem 2021, 3 (4), e2000064. https://doi.org/10.1002/syst.202000064.
(120) Hughes, E. A. B.; Chipara, M.; Hall, T. J.; Williams, R. L.; Grover, L. M. Chemobrionic Structures in Tissue Engineering: Self-Assembling Calcium Phosphate Tubes as Cellular Scaffolds. Biomater. Sci. 2020, 8 (3), 812–822. https://doi.org/10.1039/C9BM01010F.
(121) Hughes, E. A. B.; Cox, S. C.; Cooke, M. E.; Davies, O. G.; Williams, R. L.; Hall, T. J.; Grover, L. M. Interfacial Mineral Fusion and Tubule Entanglement as a Means to Harden a Bone Augmentation Material. Advanced Healthcare Materials 2018, 7 (7), 1701166. https://doi.org/10.1002/adhm.201701166.
(122) Hughes, E. A. B.; Williams, R. L.; Cox, S. C.; Grover, L. M. Biologically Analogous Calcium Phosphate Tubes from a Chemical Garden. Langmuir 2017, 33 (8), 2059–2067. https://doi.org/10.1021/acs.langmuir.6b04574.
(123) Angelis, G.; Pampalakis, G. A Self-Assembled Planar Chemical Garden in a 3D Solution. ChemistrySelect 2020, 5 (11), 3454–3457. https://doi.org/10.1002/slct.202000510.
(124) Barge, L. M.; Cardoso, S. S. S.; Cartwright, J. H. E.; Doloboff, I. J.; Flores, E.; Macías-Sánchez, E.; Sainz-Díaz, C. I.; Sobrón, P. Self-Assembling Iron Oxyhydroxide/Oxide Tubular Structures: Laboratory-Grown and Field Examples from Rio Tinto. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2016, 472 (2195), 20160466. https://doi.org/10.1098/rspa.2016.0466.
(125) Silva-Bedoya, L. M.; Watkin, E.; Machuca, L. L. Deep-Sea Corrosion Rusticles from Iron-Hulled Shipwrecks. Materials and Corrosion 2021, 72 (7), 1138–1151. https://doi.org/10.1002/maco.202112289.
(126) Baker, A.; Tóth, Á.; Horváth, D.; Walkush, J.; Ali, A. S.; Morgan, W.; Kukovecz, Á.; Pantaleone, J. J.; Maselko, J. Precipitation Pattern Formation in the Copper(II) Oxalate System with Gravity Flow and Axial Symmetry. J. Phys. Chem. A 2009, 113 (29), 8243–8248. https://doi.org/10.1021/jp9007703.
(127) Ding, Y.; Batista, B.; Steinbock, O.; Cartwright, J. H. E.; Cardoso, S. S. S. Wavy Membranes and the Growth Rate of a Planar Chemical Garden: Enhanced Diffusion and Bioenergetics. PNAS 2016, 113 (33), 9182–9186. https://doi.org/10.1073/pnas.1607828113.
(128) Barge, L. M.; Jones, J.-P.; Pagano, J. J.; Martinez, E.; Bescup, J. Three-Dimensional Analysis of a Simulated Prebiotic Hydrothermal Chimney. ACS Earth Space Chem. 2020, 4 (9), 1663–1669. https://doi.org/10.1021/acsearthspacechem.0c00186.
(129) Wang, Q.; Bentley, M. R.; Steinbock, O. Self-Organization of Layered Inorganic Membranes in Microfluidic Devices. J. Phys. Chem. C 2017, 121 (26), 14120–14127. https://doi.org/10.1021/acs.jpcc.7b02778.
(130) Batista, B. C.; Steinbock, O. Growing Inorganic Membranes in Microfluidic Devices: Chemical Gardens Reduced to Linear Walls. J. Phys. Chem. C 2015, 119 (48), 27045–27052. https://doi.org/10.1021/acs.jpcc.5b08813.
(131) Kumar, P.; Horváth, D.; Tóth, Á. Bio-Inspired Flow-Driven Chitosan Chemical Gardens. Soft Matter 2020, 16 (36), 8325–8329. https://doi.org/10.1039/D0SM01397H.
(132) Toth, A.; Horvath, D.; Kukovecz, A.; Maselko, M.; Baker, A.; Ali, S.; Maselko, J. Pathway Control in the Self-Construction of Complex Precipitation Forms in a Cu(II)-Oxalate System. Journal of Systems Chemistry 2012, 3 (1), 4. https://doi.org/10.1186/1759-2208-3-4.
(133) Tóth–Szeles, E.; Schuszter, G.; Tóth, Á.; Kónya, Z.; Horváth, D. Flow-Driven Morphology Control in the Cobalt–Oxalate System. CrystEngComm 2016, 18 (12), 2057–2064. https://doi.org/10.1039/C5CE02459E.
(134) Balog, E.; Papp, P.; Tóth, Á.; Horváth, D.; Schuszter, G. The Impact of Reaction Rate on the Formation of Flow-Driven Confined Precipitate Patterns. Phys. Chem. Chem. Phys. 2020, 22 (24), 13390–13397. https://doi.org/10.1039/D0CP01036G.
(135) Pampalakis, G. The Generation of an Organic Inverted Chemical Garden. Chemistry – A European Journal 2016, 22 (20), 6779–6782. https://doi.org/10.1002/chem.201504773.
(136) Cartwright, J. H. E.; Escribano, B.; González, D. L.; Sainz-Díaz, C. I.; Tuval, I. Brinicles as a Case of Inverse Chemical Gardens. Langmuir 2013, 29 (25), 7655–7660. https://doi.org/10.1021/la4009703.
(137) Knoll, P.; Gonzalez, A. V.; McQueen, Z. C.; Steinbock, O. Flow-Induced Precipitation in Thin Capillaries Creates Helices, Lamellae, and Tubes. Chemistry – A European Journal 2019, 25 (61), 13885–13889. https://doi.org/10.1002/chem.201903951.
(138) Pampalakis, G. From Chemical Gardens to Quasibiological Inorganic Cells. ChemistrySelect 2019, 4 (9), 2802–2805. https://doi.org/10.1002/slct.201803796.
(139) Wang, Q.; Steinbock, O. Chemical Garden Membranes in Temperature-Controlled Microfluidic Devices. Langmuir 2021, 37 (7), 2485–2493. https://doi.org/10.1021/acs.langmuir.0c03548.
(140) Wang, Q.; Zanotto, F. M.; Steinbock, O. Precipitate Patterns in a Hele-Shaw Cell with Small Sinusoidal Height Variations. J. Phys. Chem. C 2020, 124 (39), 21617–21624. https://doi.org/10.1021/acs.jpcc.0c06921.
(141) Batista, B. C.; Steinbock, O. Chemical Gardens without Silica: The Formation of Pure Metal Hydroxide Tubes. Chem. Commun. 2015, 51 (65), 12962–12965. https://doi.org/10.1039/C5CC04724B.
(142) Iverson, W. P. Formation of “Hollow Whiskers” from Metals by Reaction with Ferricyanide and Ferrocyanide. Nature 1967, 213 (5075), 486–487. https://doi.org/10.1038/213486a0.
(143) Lillie, R. S.; Johnston, E. N. Precipitation-Structures Simulating Organic Growth. Ii : A Contribution to the Physico-Chemical Analysis of Growth and Heredity. The Biological Bulletin 1919, 36 (4), 225-[272]-1. https://doi.org/10.2307/1536337.
(144) Frenkel, M.; Multanen, V.; Grynyov, R.; Musin, A.; Bormashenko, Y.; Bormashenko, E. Camphor-Engine-Driven Micro-Boat Guides Evolution of Chemical Gardens. Scientific Reports 2017, 7 (1), 3930. https://doi.org/10.1038/s41598-017-04337-w.
(145) Bormashenko, E.; Bormashenko, Y.; Grynyov, R.; Pogreb, R.; Schechter, A. How to Grow a Movable Mini-Garden in a Droplet: Growing Chemical Gardens in a Water and Aqueous Ethanol Solutions Droplets Deposited on a Superhydrophobic Surface. Colloids and Interface Science Communications 2015, 7, 12–15. https://doi.org/10.1016/j.colcom.2015.11.001.
(146) Bormashenko, E.; Bormashenko, Y.; Stanevsky, O.; Pogreb, R. Evolution of Chemical Gardens in Aqueous Solutions of Polymers. Chemical Physics Letters 2006, 417 (4), 341–344. https://doi.org/10.1016/j.cplett.2005.10.049.
(147) Beutner, R. New Electric Properties of a Semipermeable Membrane of Copper Ferrocyanide. J. Phys. Chem. 1913, 17 (4), 344–360. https://doi.org/10.1021/j150139a006.
(148) Morse, H. N. The Osmotic Pressure of Aqueous Solutions, Report on Investigations Made in the Chemical Laboratory of the Johns Hopkins University during the Years 1899-1913; Washington, Carnegie Inst., 1914.
(149) Pfeffer, W. Osmotische Untersuchungen; Studien Zur Zellmechanik., 2. unveränderte Aufl.; W. Engelmann,: Leipzig, 1921; pp 1–262. https://doi.org/10.5962/bhl.title.1653.
(150) Traube, M. Experimente zur Theorie der Zellenbildung und Endosmose. Archiv für Anatomie, Physiologie und wissenschaftliche Medicin 1867, 87–165.
(151) Udovichenko, V. V.; Strizhak, P. E.; Toth, A.; Horwath, D.; Ning, S.; Maselko, J. Temporal and Spatial Organization of Chemical and Hydrodynamic Processes. The System Pb2+−Chlorite−Thiourea. J. Phys. Chem. A 2008, 112 (20), 4584–4592. https://doi.org/10.1021/jp8009063.
(152) Leduc, S. The Mechanism of Life; Butcher, W. D., Translator; 1911.
(153) Cardoso, S. S. S.; Cartwright, J. H. E.; Sainz-Díaz, C. I. Carbonate-Hydroxide Chemical-Garden Tubes in the Soda Ocean of Enceladus: Abiotic Membranes and Microtubular Forms of Calcium Carbonate. Icarus 2019, 319, 337–348. https://doi.org/10.1016/j.icarus.2018.09.020.
(154) Maselko, J.; Kiehl, M.; Couture, J.; Dyonizy, A.; Kaminker, V.; Nowak, P.; Pantaleone, J. Emergence of Complex Behavior in Chemical Cells: The System AlCl3–NaOH. Langmuir 2014, 30 (20), 5726–5731. https://doi.org/10.1021/la404676z.
(155) Coatman, R. D.; Thomas, N. L.; Double, D. D. Studies of the Growth of “Silicate Gardens” and Related Phenomena. J Mater Sci 1980, 15 (8), 2017–2026. https://doi.org/10.1007/BF00550628.
(156) Takács, D.; Schuszter, G.; Sebők, D.; Kukovecz, Á.; Horváth, D.; Tóth, Á. Magnetic-Field-Manipulated Growth of Flow-Driven Precipitate Membrane Tubes. Chemistry – A European Journal 2019, 25 (65), 14826–14833. https://doi.org/10.1002/chem.201902830.
(157) Angelis, G.; Kordopati, G. G.; Zingkou, E.; Karioti, A.; Sotiropoulou, G.; Pampalakis, G. Plausible Emergence of Biochemistry in Enceladus Based on Chemobrionics. Chemistry – A European Journal 2021, 27 (2), 600–604. https://doi.org/10.1002/chem.202004018.
(158) McMahon, S. Earth’s Earliest and Deepest Purported Fossils May Be Iron-Mineralized Chemical Gardens. Proceedings of the Royal Society B: Biological Sciences 2019, 286 (1916), 20192410. https://doi.org/10.1098/rspb.2019.2410.
(159) Maselko, J.; Borisova, P.; Carnahan, M.; Dreyer, E.; Devon, R.; Schmoll, M.; Douthat, D. Spontaneous Formation of Chemical Motors in Simple Inorganic Systems. J Mater Sci 2005, 40 (17), 4671–4673. https://doi.org/10.1007/s10853-005-3926-z.
(160) Copisarow, M. Mineralische Baumformationen: ihre Bildung und Bedeutung. Kolloid-Zeitschrift 1929, 47 (1), 60–65. https://doi.org/10.1007/BF01423141.
(161) Cardoso, S. S. S.; Cartwright, J. H. E.; Checa, A. G.; Sainz-Díaz, C. I. Fluid-Flow-Templated Self-Assembly of Calcium Carbonate Tubes in the Laboratory and in Biomineralization: The Tubules of the Watering-Pot Shells, Clavagelloidea. Acta Biomaterialia 2016, 43, 338–347. https://doi.org/10.1016/j.actbio.2016.07.005.
(162) Schuszter, G.; Brau, F.; Wit, A. D. Flow-Driven Control of Calcium Carbonate Precipitation Patterns in a Confined Geometry. Phys. Chem. Chem. Phys. 2016, 18 (36), 25592–25600. https://doi.org/10.1039/C6CP05067K.
(163) Igarashi, K.; Takiguchi, M.; Ooshima, H. Growth Mechanism of the Calcium Carbonate Tubes on a Cation-Exchange Membrane. Journal of the Ceramic Society of Japan 2008, 116 (1349), 111–114. https://doi.org/10.2109/jcersj2.116.111.
(164) Takiguchi, M.; Igarashi, K.; Azuma, M.; Ooshima, H. Tubular Structure Agglomerates of Calcium Carbonate Crystals Formed on a Cation-Exchange Membrane. Crystal Growth & Design 2006, 6 (7), 1611–1614. https://doi.org/10.1021/cg060045x.
(165) Copisarow, M. XXXV.—The Liesegang Phenomenon and Stratification. J. Chem. Soc. 1927, No. 0, 222–234. https://doi.org/10.1039/JR9270000222.
(166) Harting, P. Recherches de morphologie synthétique sur la production artificielle de quelques formations calcaires organiques; Van der Post, 1872.
(167) Maselko, J.; Strizhak, P. Spontaneous Formation of Cellular Chemical System That Sustains Itself Far from Thermodynamic Equilibrium. J. Phys. Chem. B 2004, 108 (16), 4937–4939. https://doi.org/10.1021/jp036417j.
(168) Birkedal, H.; Chen, Y. Chapter Eight - Mussel Inspired Self-Healing Materials: Coordination Chemistry of Polyphenols. In Advances in Inorganic Chemistry; Ruiz-Molina, D., van Eldik, R., Eds.; Nanoscale Coordination Chemistry; Academic Press, 2020; Vol. 76, pp 269–298. https://doi.org/10.1016/bs.adioch.2020.03.006.
(169) Schuszter, G.; De Wit, A. Comparison of Flow-Controlled Calcium and Barium Carbonate Precipitation Patterns. J. Chem. Phys. 2016, 145 (22), 224201. https://doi.org/10.1063/1.4971286.
(170) Steenbjerg Ibsen, C. J.; Mikladal, B. F.; Bjørnholt Jensen, U.; Birkedal, H. Hierarchical Tubular Structures Grown from the Gel/Liquid Interface. Chemistry – A European Journal 2014, 20 (49), 16112–16120. https://doi.org/10.1002/chem.201402741.
(171) Hazlehurst, T. H. Structural Precipitates: The Silicate Garden Type. J. Chem. Educ. 1941, 18 (6), 286. https://doi.org/10.1021/ed018p286.